Quotes4study

The importance of resolution over craft is one of the most important shifts in art making besides the creation of Photoshop.

Andrew Durbin

There are some micro-organisms that exhibit characteristics of both plants

and animals.  When exposed to light they undergo photosynthesis; and when

the lights go out, they turn into animals.  But then again, don't we all?

Fortune Cookie

The phenomena of variable stars were examined by Herschel as a guide to what might be occurring in our own sun. The sun, he knew, rotated on its axis, and he knew that dark spots often exist on its photosphere; the questions that he put to himself were--Are there dark spots also on variable stars? Do the stars also rotate on their axes? or are they sometimes partially eclipsed by the intervention of opaque bodies? And he went on to enquire, What are these singular spots upon the sun? and have they any practical relation to the inhabitants of this planet? To these questions he applied his telescopes and his thoughts; and he communicated the results to the Royal Society in no less than six memoirs, occupying very many pages in the _Philosophical Transactions_, and extending in date from 1780 to 1801. It was in the latter year that these remarkable papers culminated in the inquiry whether any relation could be traced in the recurrence of sun-spots, regarded as evidences of solar activity, and the varying seasons of our planet, as exhibited by the varying price of corn. Herschel's reply was inconclusive; nor has a final solution of the related problems yet been obtained. Entry: HERSCHEL

Encyclopaedia Britannica, 11th Edition, Volume 13, Slice 4 "Hero" to "Hindu Chronology"     1910-1911

CARRINGTON, RICHARD CHRISTOPHER (1826-1875), English astronomer, son of a brewer at Brentford, was born in London on the 26th of May 1826. Though intended for the Church, his studies and tastes inclined him to astronomy, and with a view to gaining experience in the routine of an observatory he accepted the post of observer in the university of Durham. Finding, however, that there was little chance of obtaining instruments suitable for the work which he wished to undertake, he resigned that appointment and established in 1853 an observatory of his own at Redhill. Here he devoted three years to a survey of the zone of the heavens within 9 degrees of the North Pole, the results of which are contained in his _Redhill Catalogue of 3735 Stars_. But his name is chiefly perpetuated through his investigation of the motions of sun-spots, by which he determined the elements of the sun's rotation and made the important discovery of a systematic drift of the photosphere, causing the rotation-periods of spots to lengthen with increase of solar latitude. He died on the 27th of November 1875. Entry: CARRINGTON

Encyclopaedia Britannica, 11th Edition, Volume 5, Slice 4 "Carnegie Andrew" to "Casus Belli"     1910-1911

The eclipse of December 28, 1870, passed over the south-western corner of Spain, Gibraltar, Oran and Sicily. It is memorable for the discovery by Young of the "reversing layer" of the solar atmosphere. This term is now applied to a shallow stratum resting immediately upon the photosphere, the absorption of which produces the principal dark lines of the solar spectrum, but which, being incandescent, gives a spectrum of bright lines by its own light when the light of the sun is cut off. This layer is much thinner than the chromosphere, and may be considered to form the base of the latter. Owing to its thinness, the phenomenon of the reversed bright lines is almost instantaneous in its nature, and can be observed for a period exceeding one or two seconds only near the edge of the shadow-path, where the moon advances but little beyond the solar limb. Near the central line it is little more than a flash, thus giving rise to the term "flash-spectrum." Young also at this eclipse saw bright hydrogen lines when his spectroscope was directed to the centre of the dark disk of the moon. This can only be attributed to the reflection of the light of the prominences and chromosphere from the atmosphere between us and the moon. The coronal light as observed in the spectroscope may thus be regarded as a mixture of true coronal light with chromospheric light reflected from the air, and it is therefore probable that the H and K (calcium) lines of the coronal spectrum are not true coronal lines, but chromospheric. Entry: I

Encyclopaedia Britannica, 11th Edition, Volume 8, Slice 10 "Echinoderma" to "Edward"     1910-1911

One of the earliest workers at plant physiology was Stephen Hales. In his _Statical Essays_ (1727) he gave an account of numerous experiments and observations which he had made on the nutrition of plants and the movement of sap in them. He showed that the gaseous constituents of the air contribute largely to the nourishment of plants, and that the leaves are the organs which elaborate the food; the importance of leaves in nutrition had been previously pointed out by Malpighi in a short account of nutrition which forms an appendix to his anatomical work. The birth of modern chemistry in the work of J. Priestley and Lavoisier, at the close of the 18th century, made possible the scientific study of plant-nutrition, though Jan Ingenhousz in 1779 discovered that plants incessantly give out carbonic acid gas, but that the green leaves and shoots only exhale oxygen in sunlight or clear daylight, thereby indicating the distinction between assimilation of carbonic acid gas (photosynthesis) and respiration. N.T. de Saussure (1767-1845) gave precision to the science of plant-nutrition by use of quantitative methods. The subjects of plant nutrition and respiration were further studied by R.J.H. Dutrochet towards the middle of the century, and Liebig's application of chemistry to agriculture and physiology put beyond question the parts played by the atmosphere and the soil in the nutrition of plants. Entry: A

Encyclopaedia Britannica, 11th Edition, Volume 4, Slice 3 "Borgia, Lucrezia" to "Bradford, John"     1910-1911

A beam of sunlight admitted into a darkened room through a narrow aperture, and there dispersed into a vario-tinted band by the interposition of a prism, is not absolutely continuous. Dr W.H. Wollaston made the experiment in 1802, and perceived the spaces of colour to be interrupted by seven obscure gaps, which took the shape of lines owing to his use of rectangular slit. He thus caught a preliminary glimpse of the "Fraunhofer lines," so called because Joseph Fraunhofer brought them into prominent notice by the diligence and insight of his labours upon them in 1814-1815. He mapped 324, chose out nine, which he designated by the letters of the alphabet, to be standards of measurement for the rest, and ascertained the coincidence in position between the double yellow ray derived from the flame of burning sodium and the pair of dark lines named by him "D" in the solar spectrum. There ensued forty-five years of groping for a law which should clear up the enigma of the solar reversals. Partial anticipations abounded. The vital heart of the matter was barely missed by W.A. Miller in 1845, by L. Foucault in 1849, by A.J. Ångström in 1853, by Balfour Stewart in 1858; while Sir George Stokes held the solution of the problem in the hollow of his hand from 1852 onward. But it was the synthetic genius of Gustav Kirchhoff which first gave unity to the scattered phenomena, and finally reconciled what was elicited in the laboratory with what was observed in the sun. On the 15th of December 1859 he communicated to the Berlin Academy of Sciences the principle which bears his name. Its purport is that glowing vapours similarly circumstanced absorb the identical radiations which they emit. That is to say, they stop out just those sections of white light transmitted through them which form their own special luminous badges. Moreover, if the white light come from a source at a higher temperature than theirs, the sections, or lines, absorbed by them show dark against a continuous background. And this is precisely the case with the sun. Kirchhoff's principle, accordingly, not only afforded a simple explanation of the Fraunhofer lines, but availed to found a far-reaching science of celestial chemistry. Thousands of the dark lines in the solar spectrum agree absolutely in wave-length with the bright rays artificially obtained from known substances, and appertaining to them individually. These substances must then exist near the sun. They are in fact suspended in a state of vapour between our eyes and the photosphere, the dazzling prismatic radiance of which they, to a minute extent, intercept, thus writing their signatures on the coloured scroll of dispersed sunshine. By persistent research, powerfully aided by the photographic camera and by the concave gratings invented by H.A. Rowland (1848-1901) in 1882, about forty terrestrial elements have been identified in the sun. Among them, iron, sodium, magnesium, calcium and hydrogen are conspicuous; but it would be rash to assert that any of the seventy forms of matter provisionally enumerated in text-books are wholly absent from his composition. Entry: A

Encyclopaedia Britannica, 11th Edition, Volume 2, Slice 7 "Arundel, Thomas" to "Athens"     1910-1911

FACULA (diminutive of _fax_, Lat. for "torch"), in astronomy, a minute shining spot on the sun's disk, markedly brighter than the photosphere in general, usually appearing in groups. Faculae are most frequent in the neighbourhood of spots. (See SUN.) Entry: FACULA

Encyclopaedia Britannica, 11th Edition, Volume 10, Slice 1 "Evangelical Church Conference" to "Fairbairn, Sir William"     1910-1911

Balfour Stewart gave a number of striking illustrations of the qualitative identity of emission and absorption of a substance. Pieces of coloured glass placed in a fire appear to lose their colour when at the same temperature as the coals behind them, because they compensate exactly for their selective absorption by radiating chiefly those colours which they absorb. Rocksalt is remarkably transparent to thermal radiation of nearly all kinds, but it is extremely opaque to radiation from a heated plate of rocksalt, because it emits when heated precisely those rays which it absorbs. A plate of tourmaline cut parallel to the axis absorbs almost completely light polarized in a plane parallel to the axis, but transmits freely light polarized in a perpendicular plane. When heated its radiation is polarized in the same plane as the radiation which it absorbs. In the case of incandescent vapours, the exact correspondence of emission and absorption as regards wave-length of frequency of the light emitted and absorbed forms the foundation of the science of spectrum analysis. Fraunhofer had noticed the coincidence of a pair of bright yellow lines seen in the spectrum of a candle flame with the dark D lines in the solar spectrum, a coincidence which was afterwards more exactly verified by W. A. Miller. Foucault found that the flame of the electric arc showed the same lines bright in its spectrum, and proved that they appeared as dark lines in the otherwise continuous spectrum when the light from the carbon poles was transmitted through the arc. Stokes gave a dynamical explanation of the phenomenon and illustrated it by the analogous case of resonance in sound. Kirchhoff completed the explanation (_Phil. Mag._, 1860) of the dark lines in the solar spectrum by showing that the reversal of the spectral lines depended on the fact that the body of the sun giving the continuous spectrum was at a higher temperature than the absorbing layer of gases surrounding it. Whatever be the nature of the selective radiation from a body, the radiation of light of any particular wave-length cannot be greater than a certain fraction E of the radiation R of the same wave-length from a black body at the same temperature. The fraction E measures the emissive power of the body for that particular wave-length, and cannot be greater than unity. The same fraction, by the principle of equality of emissive and absorptive powers, will measure the proportion absorbed of incident radiation R´. If the black body emitting the radiation R´ is at the same temperature as the absorbing layer, R = R´, the emission balances the absorption, and the line will appear neither bright nor dark. If the source and the absorbing layer are at different temperatures, the radiation absorbed will be ER´, and that transmitted will be R´ - ER´. To this must be added the radiation emitted by the absorbing layer, namely ER, giving R´ - E(R´ - R). The lines will appear darker than the background R´ if R´ is greater than R, but bright if the reverse is the case. The D lines are dark in the sun because the photosphere is much hotter than the reversing layer. They appear bright in the candle-flame because the outside mantle of the flame, in which the sodium burns and combustion is complete, is hotter than the inner reducing flame containing the incandescent particles of carbon which give rise to the continuous spectrum. This qualitative identity of emission and absorption as regards wave-length can be most exactly and easily verified for luminous rays, and we are justified in assuming that the relation holds with the same exactitude for non-luminous rays, although in many cases the experimental proof is less complete and exact. Entry: 39

Encyclopaedia Britannica, 11th Edition, Volume 13, Slice 2 "Hearing" to "Helmond"     1910-1911

CORONA (Lat. for "crown"), in astronomy, the exterior envelope of the sun, being beyond the photosphere and chromosphere, invisible in the telescope and unrecognized by the spectroscope, except during a total eclipse (see SUN; ECLIPSE). Entry: CORONA

Encyclopaedia Britannica, 11th Edition, Volume 7, Slice 4 "Coquelin" to "Costume"     1910-1911

Index: